
Hands on Model Use Ahead

Load model: Schelling Segregation.alp



A Model to Examine the Emergence of
Segregation



A Discrete Spatial Environment with
Random Agent Positioning

Spatial Width & Height

Width & Height in
Discrete Cells



Population Dependence on the
Population



Slider Input Sets Parameter Value

Sets Threshold Parameter Value

Default value is that of Threshold
parameter

“Threshold” parameter



Person is Assigned a Randomly Picked
Color

Color is set to either red or black with
equal likelihood

Person’s Visual Representation



Core Segregation (Movement) Logic

Person’s Initial Location

Count neighbors
Sharing same colour
(should be in diff.
Function).

Only satisfied if fraction of
surrounding individuals
Sharing color exceeds
threshold

if dissatisfied,
30% chance of moving



Experiment: Simulation Sets
Parameter Assumptions



Add a Parameter to Main



Experiment: Add a Slider!



Setting the Slider Properties



Setting Value for Parameter from Slider



Modify Person’s Behavior to Depend
on New Parameter

Updated Code (“get_Main()” required
Because new parameter is global
And lives in Main class rather than in
Person class.)



Movement in Discrete Space
• jumpToCell(int row, int column)

– Jumps to a particular unoccupied cell

– Precondition: destination cell is unoccupied

• moveToNextCell(int direction)
– Moves agent into neighbouring cell in a given

direction

– Directions: NORTH, SOUTH, EAST, WEST, NORTHEAST,
NORTHWEST, SOUTHEST,SOUTHWEST

• Precondition: destination cell is unoccupied

• jumpToRandomEmptyCell
– Jumps to randomly selected empty cell (returning

true), returns false if no empty cell can be located



Discovery in Discrete Space

• int []findRandomEmptyCell

– Returns row & column of an unoccupied cell

• Getting agents in cell or direction

– getAgentAtCell(int row, int column)

– getAgentNextToMe(int direction)

– getNeighbors()



Neigbourhood Models
• Moore: Cardinal directions

– NORTH,SOUTH,EAST, WEST

• Euclidean

– NORTH, SOUTH, EAST, WEST, NORTHEAST,
NORTHWEST, SOUTHEST,SOUTHWEST

Set Neighbourhood Type
Of Environment here



Important Distinction

• Suppose an agent is moving in discrete 2D
space and need to be concerned about
moving into the same cell as another agent

• We can readily prevent this agent from
moving into another cell currently occupied

• But canwe prevent this agent from colliding
with another agent that wishes to move into
the same cell?

– To answer this, we need to be clear about the
model of time used by agents



Two Key Models of Time in Anylogic:
Synchronous Time

• Here, agents all change in lockstep, separated by fixed
“time steps”

• When computing agent behavior (to determine agent
state in the next timestep), our enquiries about agent
state (e.g. using getAgentAtCell or getAgentNextToMe)
need to ask about the situation in the current timestep
– We gather needed information regarding current state in

“onBeforeStep”, and changes are performed in “OnStep”.

• This is similar to what we saw in System Dynamics – the
changes over the next small interval of time (Δt) 
depend on the current value of the stocks
– These changes are then applied at once, and all stocks are

updated



Enabling Synchronous Time

• Unless enable the steps, the various handlers for
synchronized time (e.g. “On before step”, “On
step”, “On after step”) etc.) are executed
– Both environment and agents have “On before step”

and “On after step” handlers

– “On before step” for environments is executed
before the corresponding method for agents

– “On after step” for environments is executed after
the corresponding method for agents

• Synchronous time can be enabled via the
environment “General” page
– Click checkbox “Enable steps”



Two Key Models of Time in Anylogic:
Asynchronous Time

• Here, every agent is updated at a different
time

• No two agents are typically likely to be
updated at exactly the same time, so when
considering the state of other agents they
“see” the last situation where the other agent
has been updated



Synchronization & Discrete Agent
Movement

• In Synchronous mode, it is difficult to know if two
agents will collide using data on the current timestep
– Even if we know where the other object was during the

current timestep, it’s possible it will move into the cell we
wish to occupy in the next timestep

• It is simpler to handle this asynchronously
– Here, we can have each agent update at slightly different

times, and observe the location of the other agents at the
current time – without any significant chance that they will
move to the same place at the same time.

• This issue only arises for discrete agent movement, as
this is the only case where cells only contain 1 agent


